

STUDYING THE DECOMPOSITION OF STARCH IN SALIVA

Zsuzsa Oláhné Nádasdi¹, Géza Barta¹, Erzsébet Korom²

¹ Politechnikum, Alternative Secondary School, Budapest ² Institute of Education, University of Szeged

Introduction

Inquiry based learning is becoming more and more important in science classes. This teaching approach provides a learning environment that builds upon the students' natural curiosity and interest. In this environment the students define the process of investigation and plan the steps of the research themselves. The poster shows an IBL activity in which the students study the factors affecting the activity of an enzyme in saliva and discover the role of control in an experiment. The experiment is easy to carry out, the change can be observed quickly and digital tools can be used to record and present results.

The methods of assessment

At the beginning of the inquiry activity the teacher, consulting with the students, devised the criteria of assessment. These were the following:

- planning and implementing the experiment
- formulating the research questions
- cooperation with group members

The main focus of assessment was the groups' work.

When planning the test session a system of assessment criteria was developed to facilitate the formative assessment of the students' work, which was given to the students. We assumed that with the help of the system of principles the students will be able to define the steps of their own progress. Using on the first two rows of principles of formative assessment about half of the students were able to estimate their level correctly. Some underestimated their abilities; in these cases their peers supported them by boosting their self-confidence. As expected for the students' age group, the opinions of their group members were important to them. Looking at the principles of argumentation and formulating hypotheses, the students had most difficulty formulating their own assessment. These fields of skills must be taken into account during future classes. For the row of principles of cooperation, the children estimated their own position well.

The aim of the study

The aim was to test how our devised activity works; whether the students are able to design an experiment to study three variables (temperature, enzyme concentration and reaction time).

A further aim of the method was to test assessment methods that are suitable for the assessment of students at the group's level.

The features of the session

In a science class the 14-15 year-old students studied the structure and the functioning of the digestive system. The aim of the lesson is to get to know the process of the functioning of enzymes, to recognize and identify the factors affecting this process, to develop a hypothesis, design an experiment and test the hypothesis.

In heterogeneous groups of 4 the students tried to find the answer to the question of what factors affect the activity of the amylase enzyme. In the form of an unstructured activity they demonstrated that the digestion of starch begins in the oral cavity.

As there are a number of students with disabilities or with Hungarian as a second language in the class, we used a short guide during the activity.

The system of the principles of formative assessment

Topics of assessment	Good	To be improved	Weak
Formulating	Applies	Usually knows	Does not use the
inquiry	professional	the professional	professional
questions	terminology	terminology, but	terminology.
/Oral	appropriately	does not always	
expression	and confidently.	use it.	
Planning and	Is able to carry	With some help	Is not able to
implementing	out experiments	the student is	carry out the
the	alone and to	able to	experiments on
experiment	record the	implement	their own, nor
	results	experiments and	to record the
	accurately.	record results	process and the
		with minor	results of the
		imprecisions.	experiment.
Formulating	Is able to	Is able to	Is able to
hypotheses	formulate their	formulate their	formulate the
	hypothesis and	hypothesis and	hypothesis, but
	support it with	support it with	is not able to
	arguments.	some help.	support it with
			arguments.
Argumentation	Expresses their	Occasionally is	Is not able to
	opinion logically,	not able to	formulate their
	in case of a	express their	opinion, in case
	debate the	opinion logically,	of a debate is
	student defends	in case of a	not able to
	their position	debate argues	defend their
	with appropriate arguments.	with difficulty.	position.
Cooperation	Pays attention	Pays attention	Cooperation
	to peers, takes	to peers, finds	
	part in the work	their place in the	
	enthusiastically.	work.	

The result of the experiment

The inquiry worksheets

In the table we summarized the most important activities in class and the teacher's guiding questions that helped hesitant students to move on. During the work half of the groups needed the teacher's presence and reinforcement.

In the results column it can be seen that besides the specific subject skills, social competences (social cognition, orderliness, helping one another, leading) and self-regulative skills (selfmanagement, self-control, cooperation with peers) also developed.

Activities	Helping questions	Results
Discussing the factors	What environmental	The groups easily
affecting the	conditions are	recognized the
functioning of enzyme	required for the	changing of enzyme
activity	enzyme in the saliva to	concentration and the
	work effectively?	time factor.
	How can you detect	They used the
	that the	terminology
	decomposition of	confidently.
	starch begins in the	
	saliva?	
Developing the	How many kinds of	They actively took part
hypothesis	experiments are to be	in the group work and
	carried out if we want	supported one
	to test all options?	another in it.
Putting together and	How can you	Each group completed
implementing the	demonstrate that the	the design of the
experimental plans.	decomposition of	experiment; there
	starch has started in	were differences in
	the saliva?	the addition of details
	Does temperature	and thoroughness.
	affect the work of the	Due to measurement
	enzymes?	inaccuracies two of
		the groups did not get
		the expected results in
		all experiments.
Gathering and	What conditions	There were minor
analyzing substantive	affect the enzyme	differences in the
data, drawing	activity?	drawing of
appropriate	How fast is the	conclusions. Future
conclusions.	decomposition of	instruction requires
	starch?	further attention.
Discussing experiences	How can you illustrate	They did not put
with the group.	your results?	emphasis on
		highlighting the
		connections. With the
		exception of two
		groups, they could
		express their opinions.

Worksheet

The decomposition of starch in saliva

Carbohydrates are the essential nutrients of the human body. These are the prime source of energy in our body. Their digestion begins in the oral cavity. Let's examine the decomposition of starch in the saliva! How could one prove that enzymes in the saliva begin digestion to simple sugars?

What factors affect the function of enzyme activity?

Plan an experiment to examine the different factors! The following tools are available:

Required equipment: 0,1% starch solution Lugol's solution white ceramic 3 pipettes 2-3 glass sticks distillated water 2 beakers 4 test tubes, a test tube holder funnel filter paper measuring cylinder

During the planning don't forget the different variables: the independent variable (that changes); the dependent variable (that you observe or measure) and the constant variable (that you choose to be constant during the observation).

After formulating the research questions:

- Consult with the teacher.
- Prepare a plan for the implementation, plan the steps.
- Perform the experiments and write down the observations.

Results

The students worked in six groups. The groups recognized the variables and every group chose a variable the experiment based on which they designed.

The groups worked actively throughout the whole activity, they were motivated, as everyone examined the variables they were interested in.

They economized their time for themselves, this way the implementation of the experiments was possible even for students who worked slower.

Conclusions

The groups needed reinforcement throughout the activity. The

What environmental conditions are required for the enzyme to work efficiently?

How does temperature affect enzyme functions?

Designing experiment

During the experiments every group could set the variables themselves, this way they could repeat the experiments more than once, from the results they got they could determine themselves why or why not the experiment was successful.

If the experiment supported their hypotheses, they recorded the results in a register and presented them to the other groups. If they did not manage to support their hypotheses, they thought through every single step and corrected the experiment. system of assessment principles helped them to assess their work. Special emphasis was placed on the discussion of emotions and personal impressions in the groups' selfassessment. The three-level scale is not detailed enough to evaluate the students' work appropriately, but this simple system is the clearest for students of this age.

The system of assessment principles provided great help for the students with disabilities, it gave them a visual aid for identifying the fields they needed to focus on.

Most of the students were motivated by the possibility of getting to the next level and they saw the differences between the levels.

Contact: nadasdizs@gmail.com

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289085